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Designing Risk-free Service for Renewable Wind and Solar Resources

Abstract: In all world geographies, renewable energy investment is viewed as a major compo-

nent of the solution to meet the global energy demand. However, key renewable energy resources,

such as wind and solar, are inherently stochastic, and thus, pose significant risk and reliability

challenges. We apply financial engineering asset securitization principles in this paper to carve out

risk-free generation capability from wind and solar energy generation. A market driven, dynamically

evolving design and pricing of a risk-free tranche is developed that would allow renewable genera-

tors to competitively bid and participate in day-ahead power markets. We apply the framework to

wind and solar resources located in different US geographies and assess the risk-free performance

of the tranche against a risk-free benchmark established in this paper.

Keywords: renewable energy; risk mitigation; stochastic design; securitization; dynamic pricing.

1 Introduction and Motivation

Environmental concerns are playing a critical role in pushing towards higher adoption and utiliza-

tion of renewable energy (IRENA, 2017; Deloitte, 2022). Renewable generation has been the fastest

growing resource in the U.S. (EIA, 2021), supported by federal tax credits and state-level renewable

targets (Dewey and Nelson, 2020; EOEEA, 2020). However, the inherent stochasticity of renewable

generation presents significant challenges for the power grids (Wan et al., 2015; Liang, 2016) and

the renewable energy producers (Roulston et al., 2003; Orlov et al., 2020), which impedes their

competitive participation in the power markets. An increasing renewable penetration therefore

calls for developing risk management strategies for a seamless integration of renewable assets into

power markets and in the functioning of power grids.

In this paper, we utilize asset securitization principles to define a risk-free offering based on

stochastic renewable generation resources, which can be priced, offered and fulfilled comparable

to their non-stochastic conventional generation counterparts. The risk-free tranche definition of

securitization utilizes an assessment of generation risk profile of the renewable asset and dynamically

adapts the attachment & detachment points of the risk-free tranche to the risk profile. We develop a

minimum entropy risk-neutral pricing framework to determine the market-based bid curves for the

risk-free tranche, and evaluate the performance of the risk-free tranche relative to a carefully defined

1



risk-free benchmark for the day-ahead power markets. A comparably and reliably performing risk-

free tranche can provide the necessary assurance to power grid system operators to incorporate the

renewable assets based risk-free tranche in the typical day-ahead unit commitment and economic

dispatch decisions.

Deregulation of power markets in the past decades has merited borrowing risk management

principles from the financial domain to benefit the power markets (Bierbrauer et al., 2007; Pirrong

and Jermakyan, 2008; Cartea and Villaplana, 2008). Derivative instruments are used extensively

to hedge electricity price risk and develop strategies for power market participants (Vehviläinen

and Keppo, 2003; Deng and Oren, 2006; Doege et al., 2009; Falbo et al., 2010; Coulon et al.,

2013). Increasing renewable energy penetration, with greater dependence on weather elements,

has supported the utilization of cross-hedging and weather derivatives based risk management

strategies (Müller and Grandi, 2000; Bessembinder and Lemmon, 2002; Brockett et al., 2005; Pérez-

González and Yun, 2013; Hain et al., 2018; Bhattacharya et al., 2020). While various financial risk

management principles have been applied in the literature in the context of renewable energy

assets, to the best of our knowledge asset securitization principles have not been utilized so far to

craft reliable renewable generation offering for their seamless participation in the day-ahead power

markets, which is critical to enable and sustain the growth of renewable generation.

In the credit markets, securitization has been used for decades for risk pooling and carving out

securities to match investors’ risk-reward appetite (Gupta, 2014). Securitization has been proposed

for renewable energy for the possible benefit from securitizing cashflow of renewable assets for risk

mitigation, access to a large capital pool, improvement in financing, reduction in transaction costs,

and other growth opportunities (Liu et al., 2007; Krupa and Harvey, 2017; Alafita and Pearce, 2014;

Gabig et al., 2015; Jiang and Chen, 2005; Lowder and Mendelsohn, 2013; Hyde and Komor, 2014).

Our utilization of asset securitization principles for stochastic renewable generation resources is

geared towards operational goals of allowing their active participation and integration in power

markets and enhance their revenue generation capability.

Prior studies have developed optimal bidding strategies for renewable integrated micro-grids by

modeling uncertainties in renewable energy production (Ferruzzi et al., 2016; Wang et al., 2017;

Das and Basu, 2020; Nikpour et al., 2021). However, in the larger scale power grids, existing

renewable risk management solutions and bidding strategies assume renewable generators to be

price takers, which limits their competitiveness, revenue generation capability, as well as subjects

them to high degrees of curtailment (Prokhorov and Dreisbach, 2022; Prol et al., 2020; Bird et al.,
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2016). These traits are not supportive of sustainable growth and investment in renewable energy.

Existing literature has also not developed risk-responsive pricing strategies to support the stochastic

renewable generators’ bidding in the day-ahead power markets. The methodology developed in this

study addresses this challenge by designing a risk-responsive definition and pricing for a risk-free

offering based on renewable assets.

We develop a minimum entropy risk-neutral pricing framework to construct a bidding strategy

for the risk-free tranche of a renewable asset (Avellaneda, 1998; Frittelli, 2000; Ssebugenyi et al.,

2013; Dhaene et al., 2015). This market price driven framework utilizes contingent claims pricing

based on the key determinants of day-ahead and real-time market prices and the parameters that

define the risk-free tranche. The framework applied dynamically based on the generation risk

profile of an asset leads to the construction of dynamic risk-free bid curves for the renewable asset

for the day-ahead market. Research literature provides many studies identifying the key drivers

of electricity market prices across various geographies (Girish and Vijayalakshmi, 2013; Kiesel and

Paraschiv, 2017; Mosquera-López and Nursimulu, 2019; Zarnikau et al., 2019, 2020). Electricity

demand (load) and natural gas price are the most important determinants for the day-ahead market

prices, and these factors combined with day-ahead market prices are key determinants for the real-

time market electricity prices.

Beyond defining and pricing the renewable energy risk-free tranche, its performance evaluation

is critical for an assurance of comparability to conventional risk-free generation. This is required

in terms of both assurance of delivery and financial reward to the renewable generator. The

parametric choice that defines the risk-free tranche, which are called attachment-detachment points

in securitization, is done to match assurance of delivery with a conventional risk-free benchmark.

For evaluation of financial performance, we conduct a risk-reward comparison between a bidding

strategy used by a conventional risk-free benchmark and that of the risk-free tranche developed in

this paper. Sharpe ratio of daily return is used as the performance metric for this comparison, along

with the tail risk characteristics of daily return. Since there is no established risk-free benchmark

for the power markets, similar to short-term US Treasury rates for the capital markets, we define

the risk-free benchmark in this paper based on a combined cycle natural gas-based power generator.

According to the Bipartisan Policy Center, natural gas is the largest source of electricity gen-

eration in the U.S. with a market share of 37% (Center, 2020), and it is projected to retain this

status at least until 2050. Combined cycle natural gas generators are more stable, efficient and

have higher flexibility compared to other conventional generators (Shahidehpour et al., 2005). For
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these reasons, a past study evaluates combined cycle natural gas generators as an ideal choice for a

risk-free benchmark for the power markets (Hörnlein, 2019), especially relevant as power markets

transition to higher renewable generation share. While no power generation asset is flexible and

truly risk-free in the power markets, for the above reasons a combined cycle natural gas generator

is a reasonable choice of a conventional risk-free benchmark.

We implement the risk-free tranche for many wind and solar generation resources at different

locations in New York and Texas. The risk-free tranche is designed for these assets after analyzing

their generation risk profiles and renewable bid curves are developed for the day-ahead markets.

Both the definition of tranches and the bid curves respond to the productivity of the renewable

resource at different times of the day and year, as well as the day-ahead and real-time market

price dynamics. The Sharpe ratio performance of the risk-free tranche is quite comparable to that

of our combined cycle natural gas-based risk-free benchmark asset. The tail risk characteristics

of the risk-free tranche are practically negligible, supporting the risk-free nature of the tranche.

Therefore, a comparably and reliably performing risk-free tranche provides the necessary assurance

to power grid system operators to incorporate the renewable assets based risk-free tranche in the

typical day-ahead unit commitment and economic dispatch decisions.

The rest of the paper is organized as follows. Section 2 provides a detailed description of

the methodology for the design of the risk-free tranche, the pricing framework for the tranche to

develop a day-ahead market bidding strategy. The section also outlines the development of the

risk-free benchmark and presents the performance evaluation formulation for the risk free tranche.

We describe the data and the data sources used in the study in Section 3, followed by Section 4

demonstrating the implemention of the risk-free tranche design and performance evaluation for a

selection of renewable assets. Conclusions of the study and related discussion of future work are

presented in Section 5.

2 Methodology to Design a Risk-free Tranche

Designing a risk-free tranche based on the throughput of a stochastic renewable energy resource

requires assessing the risk profile of the resource’s generation. Based on this risk profile, tranche

attachment-detachment points or cutoffs needs to be determined and pricing of the tranche needs

to be developed. Pricing to support the bidding strategy of the risk-free tranche will conduct a

valuation of the risk underlying renewable generation and the contractual parameters of the risk-

4



free tranche. We describe each element of the methodology for the design of the risk-free tranche,

followed by the framework developed to evaluate its performance.

2.1 Risk-free Tranche Definition

Generation risk profile of a renewable asset varies by the hour of the day and day of the month or

year. Moreover, the day-ahead market seeks bids for hourly delivery of power generated from all

bidding resources. Therefore, for the definition of the risk-free tranche, the attachment-detachment

points of the tranche need to be determined for each hour of each day. The attachment-detachment

points are statistical percentiles of the hourly generation distribution of a renewable asset to ensure

the tranche is delivered at the required assurance. The attachment point of the risk-free tranche is

guided by a low enough percentile of the generation distribution that ensures high level of reliability

matched with that of conventional generators, such as, a combined cycle natural gas generator.

The attachment point of the risk-free tranche is identified by examining the reliability of the risk-

free benchmark defined in terms of a combined cycle (CC) natural gas generator. Contemporary

CC generators have an average 96% reliability rate, implying that they fail to deliver on their

contractual obligation in the day-ahead market only 4% of the times they bid (Kehlhofer et al.,

2009). We match the reliability of the risk-free benchmark by taking the attachment point of the

risk-free tranche as the 4th percentile of the renewable asset’s generation distribution for each hour.

This implies that the risk-free tranche will deliver at a matched reliability of 96%.

We need to define the detachment point at the other end of the risk-free tranche definition,

with the acknowledgment that every percentile above the 4th percentile exposes the tranche to

incremental risk of failing to deliver. This additional risk is borne by the renewable generator and

is priced into the bid curve. Higher the bid price, lower the likelihood the bid will be taken up by

the market, thus reducing the revenue of the renewable generator. Therefore, the detachment point

of the risk-free tranche is defined specific to each renewable resource with the aim of matching its

risk-return characteristics with that of the risk-free benchmark. Therefore, the detachment point

of the risk-free tranche is set at a low percentile, 5th, 6th, etc., that yields an overall reliability of

96% for the risk-free tranche, albeit at a higher price point with increasing percentiles above the

4th percentile of the renewable asset’s generation distribution.

This definition of the risk-free tranche facilitates the independent system operator to treat the

risk-free tranche as equivalent to the reliable offering from other traditional generators, such as

the combined cycle natural gas generators. However, one critical element of this definition of the
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risk-free tranche is a thorough evaluation of the hourly generation distribution of the renewable

asset. Noting the high variability in renewable generation by the hour of the day and variation

across days, we conduct a generation and forecast of generation assessment to define days of similar

generation profile, called the characteristic days.

2.1.1 Characteristic Days

Power generation of renewable assets, such as solar and wind farms, is highly dependent on vari-

ations in the weather patterns. As noted above, this requires a different definition and bidding

strategy for the risk-free tranche for each hour. Although no two days are identical by their exact

generation levels, several days can be identified as similar by some key generation and forecast of

generation characteristics. These similar days of a type, called characteristic day, can be treat as

independent and identically distributed observations to allow percentile estimates for each hour’s

generation distribution for that characteristic day.

For identifying similar days for the generation of a renewable asset, each day is summarized by

a set of key daily statistics for the asset’s hourly generation and forecast of generation. These key

daily statistics describe the mean, spread, maximum, minimum of the asset’s daily generation and

forecast of generation. These features are used to conduct a detailed clustering analysis using k-

means clustering algorithm (MacQueen, 1967) to identify days of similar risk profile. The optimal

choice of k is identified for each renewable asset based on the inflection point in the k-means

elbow curve. The centroid of each cluster typifies each characteristic day type, and the risk-free

tranche definition and bidding strategy for each renewable asset is developed for each hour of each

characteristic day type.

2.2 Risk-free Tranche Pricing

We assume the day-ahead bids are cleared for all hours of the next day by the independent system

operator at time, t, where the bids are placed by all the generators at time, t− δ. The bid timeline

is shown in Figure 1. Let the actual generation from the renewable asset at time t+1 be Yt+1 and

the day-ahead (forward) price of electricity at market clearing at t be Dt, where as the real-time

(spot) price when the contract is delivered is Rt+1. The information available to the renewable

generator at the time of risk-free tranche pricing and bid curve determination is the natural gas

price, Nt−1, electricity load at the relevant node of the grid for the renewable asset, Lt−1, and

historical time series of generation, Yt−i, i ≥ 1 and forecast error, F e
t−i, i ≥ 1.
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Figure 1: Timeline for placing bids in the day ahead markets

Valuation of the risk underlying the range of renewable generation (MW) offered under the risk-

free tranche’s attachment-detachment points utilizes risk-neutral valuation of contingent claims.

Each percentile point, Cj , j = 1 . . . J , in the attachment-detachment range is valued as a contingent

claim, responsive to the increasing risk at the incremental percentile level. As described earlier, C1

is the 4th percentile of the generation distribution for time t+1 and the specific type of characteristic

day and CJ is the detachment point for the risk-free tranche. The contingent claim underlying each

bid point, Cj , is given as,

Zj,t+1 = Dt, Yt+1 ≥ Cj , (1)

= −Rt+1, Yt+1 < Cj , (2)

where in the scenario Yt+1 ≥ Cj , the renewable generator meets its delivery obligation up to that

bid point and receives a payment of Dt per MW, while in the scenario Yt+1 < Cj , the renewable

generator must pay the real-time price, Rt+1, per MW to make up for the shortfall in generation. In

a risk-free tranche, a renewable generator must bear the risk of generation shortfall and resulting

real-time price risk exposure, therefore valuation of this risk must be built into the bid price.

Therefore, risk-neutral contingent claims pricing used for each bid point, Cj , is constructed as

follows.

Prf,j = ηrf ∗ E[Dt|Yt+1 ≥ Cj ] ∗ P (Yt+1 ≥ Cj) + (3)

E[EQ[Rt+1] + λrf ∗ σQ[Rt+1]|Yt+1 < Cj ] ∗ P (Yt+1 < Cj),

where j = 1, . . . , J . The first of the two components above reflects the scenario where generation

exceeds bid percentile and the price point associated with this scenario is the expected day-ahead

price, E[Dt|Yt+1 ≥ Cj ] ∗P (Yt+1 ≥ Cj), along with a discount loading, ηrf , for allowing competitive

bids. The second term corresponds to the scenario when the generation fails to exceed the day-ahead
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commitment, when the renewable generator must acquire the shortfall from the real-time market

(or incur real-time price penalty) to honor its day-ahead obligation. The valuation implication

is captured by E[EQ[Rt+1] + λrf ∗ σQ[Rt+1]|Yt+1 < Cj ] ∗ P (Yt+1 < Cj), where EQ[Rt+1] is the

average price exposure and λrfσ
Q[Rt+1] captures the price of risk exposure in terms of renewable

generator’s risk aversion parameter, λrf .

The complete risk-free tranche bid curve is constructed by a linear interpolation between all

bid price points, Prf,j , given in Equation 3 as follows:

frf (Cx) =


Prf,j Cx = Cj ; j = 1, . . . , J

Prf,j +
Prf,j+1−Prf,j

Cj+1−Cj
(Cx − Cj) Cj+1 > Cx > Cj .

(4)

Cx is the renewable generation in MW corresponding to xth percentile of generation distribution.

Prf,j is the bid price in $/MW at the percentile bid points and frf (Cx) is the complete bid curve

from C1 to CJ , attachment to detachment points of the risk-free tranche.

As seen in Equation 3, the bid curve valuation requires a reliable estimate of the expected

day-ahead price, E[Dt], and the distribution of the real-time market price, Rt+1. We discuss this

in the next section. Additionally, the expectations in Equation 3, EQ[.], are taken with respect to

a risk-neutral measure. We need to determine an appropriately constructed risk-neutral measure

to implement the above risk-free tranche pricing and bid curve determination approach. For each

characteristic day type, a bid curve using the above framework is developed for each hour, which

reflects the characteristic days’ generation risk profile.

2.2.1 Electricity Price Models

Based on the literature, we use regional demand for electricity (load) and natural gas price as

the key components for estimating electricity prices. A regression model for the hourly day-ahead

prices, Dt, is built using lagged regional load, Lt−1, and lagged natural gas prices, Nt−1. Similarly,

a regression model is built for hourly real-time price, Rt+1, using estimated day-ahead price, E[Dt],

lagged regional load, Lt−1, and lagged natural gas price, Nt−1. The models are summarized as
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follows.

Dt = αLt−1 + βNt−1 + ϵ, (5)

E[Dt] = αLt−1 + βNt−1, (6)

Rt+1 = γE[Dt] + δLt−1 + θNt−1 + ϵ′, (7)

where α, β, γ, δ, θ are the estimated regression coefficients and ϵ′ is the residual error for real-time

market price. The residual errors for the real-time market prices model are retained, which reflect

other sources of risk such as transmission and outages, beyond the load, natural gas price and

day-ahead price factors. Simulating from standard distributional fit on the residuals, ϵ′, yields the

variations in the real-time price in Equation 7. This variation is used to estimate the second term

of Equation 3, namely E[EQ[Rt+1]+λrf ∗σQ[Rt+1]|Yt+1 < Cj ]∗P (Yt+1 < Cj), when the renewable

generation fails to exceed the bid-point of the risk-free tranche.

2.2.2 Estimation of Risk Neutral Probabilities

The day-ahead price in the power markets is effectively the forward price for the spot or real-time

market price, since it is fixed at t for delivery of the product at t + 1. Therefore, the forward

price is an unbiased estimate of the future spot price, under an appropriately defined Martingale

measure as per the electricity price expectation hypothesis (Eydeland and Wolyniec, 2002). This

relationship between the real-time and day-ahead prices can be stated as,

Dt = EQ[Rt+1], (8)

where the expectation is taken with respect to an appropriate risk-neutral measure. On the basis

of many states of the real-time market price and only one above relationship, it is not possible

to identify a unique risk-neutral measure. In this incomplete market setting, we seek a minimum

entropy risk-neutral measure that satisfies the above relationship between day-ahead and real-time

electricity prices.

A minimal-entropy risk neutral probability measure, {qi, i = 1, . . . , n}, is obtained by minimiz-

ing the entropy difference between the physical probability measure, {pi, i = 1, . . . , n}, and the

risk-neutral measure, qi. Before we formulate the optimization problem to obtain this minimum
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entropy risk neutral measure, we restate Equation 3 as follows.

Prf,x = ηrf ∗ E[Dt|Yt+1 ≥ Cj ] ∗ P (Yt+1 ≥ Cj) + (9)

E[E[Dt][E
Q[

Rt+1

E[Dt]
] + λrf ∗ σQ[

Rt+1

E[Dt]
]]|Yt+1 < Cj ] ∗ P (Yt+1 < Cj).

The above normalized re-statement of Equation 3 is done for tractability to avoid estimating risk-

neutral probabilities, {qi, i = 1, . . . , n}, for each discrete unique value of E[Dt].

We define Vt =
Rt+1

Dt
to estimate the discretized risk neutral probabilities with n states. The

minimum entropy risk neutral probabilities are estimated by minimizing the distance between phys-

ical and risk neutral probabilities subject to constraints that enforce the relationship in Equation 8

between day-ahead and real-time market prices using the following optimization formulation:

min
n∑
i

(pi − qi)
2 (10)

s.t.
n∑

i=1

qi = 1.0, (11)

n∑
i=1

qivi = 1.0, (12)

0 ≤ qi ≤ 1. (13)

In the above formulation, {vi, i = 1, . . . , n} are the n discretized points of the Vt ratio and constraints

in Equations 11-13 ensure q to be a risk-neutral measure.

2.3 Evaluating Risk-free Tranche Performance

Beyond definition and pricing, it is essential to evaluate the performance of the risk-free tranche.

As stated earlier, the performance of the risk-free tranche is important both in terms of reliability

and financial characteristics. The choice of attachment and detachment points of the risk-free

tranche matches the tranche in reliability with a combined cycle natural gas generation. Equation 3

entails that when the renewable generation fails to meet the committed offering, the real-time

market is accessed to make up for the shortfall. However, making up for this shortfall has financial

implications, therefore performance evaluation between risk-free tranche and risk-free benchmark

is primarily financial.

The financial performance evaluation compares the risk-reward characteristics of the risk-free
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tranche against that of the risk-free benchmark. For this purpose, daily return time-series is devel-

oped for both the resources. Daily return is determined in terms of the daily revenue received based

on the hourly bid curves of the resource and daily cost estimates, as Returnx = Revenuex−Costx
Costx

,

where x can be ‘rf ’ to depict risk-free tranche or x is ‘rfb’ to depict the risk-free benchmark. The

daily revenue for both the resources is computed as:

Revenue per day =
24∑
τ=1

DtQ
e
x,t −

24∑
τ=1

Rt+1I(Yt+1<Qe
x,t)

(Qe
x,t − Yt+1), (14)

where Dt is the day-ahead market price, Rt+1 is the real-time market price at t + 1, Yt+1 is the

resource’s generation at t+ 1, I is an indicator function, and τ is a count of 24 hours of a day.

The risk-free tranche bid curves developed in Equation 4 for each hour are used to determine

the amount of power the renewable resource sells in the day-ahead market. The contracted power

under the risk-free tranche, Qe
rf,t, is a function of the risk-free bid curve, frf as follows.

Qe
rf,t =

0 Dt < Prf,C1 ,

f−1
rf (Dt) Prf,C1 ≤ Dt ≤ Prf,CJ

,

CJ Dt > Prf,CJ
,

(15)

where C1 and CJ are the attachment and detachment points, respectively, of the risk-free tranche

and Prf,Cj
is the bid price in $/MW of the risk-free tranche corresponding to Cj , a percentile of

the generation distribution.

The cost term of renewable asset is dominated by the fixed operations and maintenance (FOM)

costs. The daily FOM cost is treated as the cost of goods sold, which is either scaled up or down

based on the productivity of the type of characteristic day. The total cost is applied to the risk-

free tranche proportional to the fraction of asset’s generation allocated to the tranche under the

assumption that renewable generation is curtailed at 60%ile of hourly generation distribution to

control overall shortfalls. Therefore, daily cost allocated to the risk-free tranche is determined by

the productivity of the tranche and is given by,

Costrf =

∑24
τ=1CJ,τ∑24

τ=1C60%ile,τ

∗ F, (16)

where CJ,τ is the detachment point of the risk-free tranche at hour τ of the day and F is the fixed

daily O&M cost of the renewable asset.
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2.3.1 Risk-free Benchmark

The risk-reward characteristics of the risk-free benchmark, defined in terms of a combined cycle

(CC) natural gas generator, is developed similarly in terms of its revenue and fixed & variable costs.

The daily return of a combined-cycle natural gas generator is defined as before with x replaced by

‘rfb’ and daily revenue given by:

Revenuerfb =
24∑
τ=1

Dt ∗Qe
rfb,t −

24∑
τ=1

Rt+1 ∗ (1− ρt+1) ∗Qe
rfb,t, (17)

where ρt+1 ∈ {0, 1} represents reliability metric simulated as a binary time series with P (ρt+1 =

1) = 0.96 and the power contracted by the risk-free benchmark asset in the day-ahead market at

time t is given by:

Qe
rfb,t = f−1

rfb(Dt), (18)

where frfb is the risk-free benchmark assets hourly dynamic bid curve. The total daily cost for a

CC unit is given by:

Total Costrfb = F + (
24∑
n=1

V ∗ ρt+1 ∗ Qrfb,t) + (H ∗Nt ∗
24∑
n=1

ρt+1 ∗ Qrfb,t), (19)

where F and V are the fixed and variable operations & maintenance costs, respectively, H is the

heat rate of a natural gas power plant, Nt is the price of natural gas fuel, Qrfb,t is the power

contracted in the day ahead market at time t, and ρt+1 ∈ {0, 1} is the reliability metric of a CC

unit. Unlike the risk-free tranche, the bid curves of the risk-free benchmark are extracted from

the bids data posted by various independent system operators, which will be discussed in the data

section, Section 3.

2.3.2 Performance Evaluation Metric

Financial performance of risk-free tranche is compared against that of the risk-free benchmark in

terms of Sharpe ratio. The daily return time series for both the resources are used to construct

estimates of Sharpe ratio. The standard Sharpe ratio assumes zero volatility of the risk-free as-

set, however in the power markets setting, the risk-free benchmark doesn’t have zero volatility,

given that its reliability is 96%. We adjust the performance evaluation metric by comparing the

risk-adjusted returns of the renewable asset’s risk-free tranche, Ri
σi
, against that of the risk-free
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benchmark,
Rf

σf
, where Ri and σi are the average daily return and standard deviation of daily

return for the risk-free tranche, respectively, and Rf and σf are the corresponding values for the

risk-free benchmark. Risk-free tranche performance in terms of this performance metric, for being

comparable to the risk-free benchmark, should be similar to that of the risk-free benchmark.

3 Data for Design and Evaluation of Risk-free Tranche

Implementation of the methodology developed in Section 2 for the design and performance evalu-

ation of a renewable generation based risk-free tranche requires several datasets. Data to support

this study are extracted from two major sources, the independent system operators and the US

Energy Information Administration (EIA). The first dataset is for renewable generation resources

in disparate geographies to implement and assess the framework. Pricing formulation in support

of developing risk-free tranche bidding strategies requires power markets price, load and natural

gas price data. Finally, to accomplish performance evaluation, we need to define and implement

the performance of the risk-free benchmark. Bidding and cost data for combined cycle natural gas

generator are utilized for this purpose. We describe these datasets next.

3.1 Solar and Wind Resources Data

Renewable assets, constituting of wind and solar resources, generation and forecast time series

data are needed and acquired from New York Independent System Operator (NYISO). We have

acquired and implemented the methodology for a suite of wind and solar resources from the Texas

geography also, however we will focus on the data and results in this paper based on New York

state resources. Wind generation and forecast data, aggregated for 3 wind farms, are available for

the time period Jan 2017- Dec 2020. Solar generation and forecast data from behind-the-meter

(BTM) installations aggregated at the zonal level are available for the time period Jan 2018 - Dec

2019. The aggregated data from collocated units in a zone are treated as from a single renewable

asset.

Wind and solar assets from New York-Zone A are chosen to demonstrate the design and perfor-

mance evaluation of risk-free tranche. Wind and solar assets have an installed generation capacity

of 135.5MW and 68.5MW, respectively. Table 1 shows the descriptive statistics of the hourly gen-

eration and forecast time series for the solar and wind renewable assets. The fixed operations and

maintenance cost estimates are obtained for representative solar unit with 150MW generation ca-
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pacity and a wind unit with 200MW generation capacity from EIA (2020). The cost estimates are

scaled down proportionately as per the generation capacity of the renewable assets in our study.

Solar Generation Solar Forecast Wind Generation Wind Forecast

count 17500.00 17500.00 34705.00 34705.00

mean 7.85 7.66 29.68 30.12

std 13.32 12.31 29.55 28.86

min 0.00 0.00 0.00 0.00

25% 0.00 0.00 5.10 6.00

50% 0.05 0.18 19.90 20.80

75% 10.18 11.11 46.70 47.60

max 62.01 68.35 125.00 124.90

Table 1: Descriptive stats of generation & forecast for the solar and the wind unit

3.2 Price Determinants Data

.

Day-ahead and real-time market electricity prices & real time load data for New York - Zone A

for the time period Jan 2013-Dec 2020 are obtained from New York Independent System Operator

(NYISO). The zonal electricity prices and load data are publicly available from NYISO website.

The Henry-Hub daily natural gas spot price data are obtained from the U.S. Energy Information

Administration, which is also publicly available. Table 2 shows descriptive statistics for day-ahead

price, real-time price, load data at hourly granularity and natural gas price at daily granularity.

3.3 Risk-free Benchmark Data

.

Hourly bidding data for combined cycle natural gas generators is publicly available from NYISO

website. Representative bid curves are constructed based on six combined cycle (CC) units from

six different companies, four of these units are located in Zone J and two are in Zone G of New York

state, which each bid into their respective zonal power markets. We extract the MW bid level and

$/MW bid curves for each hour of each unit for the time period Oct 2019 to Sep 2020. The extreme

CC bid levels are removed since these correspond to levels that the CC units intends to not fulfill
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Real Time Price Day Ahead Price Load Natural Gas Price

count 70056.00 70056.00 70056.00 70056.00

mean 30.66 30.13 1765.06 3.00

std 41.75 24.29 247.87 0.85

min 0.00 1.03 790.28 1.33

25% 15.41 17.54 1580.17 2.49

50% 22.98 25.82 1757.85 2.88

75% 32.69 35.78 1922.49 3.50

max 1237.21 500.00 2822.58 8.15

Table 2: Descriptive statistics of price determinants at hourly or daily granularity.

due to their upper operating limits. For the evaluation of performance of the risk-free benchmark,

we additionally obtain day-ahead and real-time market prices for these zones from NYISO website.

Cost estimates for CC unit require fixed O&M cost, variable O&M cost, and heat-rate to

convert natural gas fuel into electric power. These data are obtained from US EIA, where we

focus specifically on a representative CC unit that has combustion turbine H class, combined-cycle

single shaft technology of net plant capacity 418MW. We normalize the bids and scale the costs

accordingly for the six actual combined cycle units for which data are collected. For the role of

natural gas price in CC unit variable cost, EIA reports that the average natural gas price in NY is

17% higher than the Henry Hub natural gas spot price. The variable cost is adjusted for this price

mark up.

Risk-free benchmark revenue and total cost depend on the bidding behavior of the CC natural

gas units. Hourly representative bid curves are generated to capture CC unit’s bidding behavior by

fitting a bid curve to the six sample unit’s bid curves. Variation in the bid curves arise due to daily

variation in natural gas price and other seasonal effects. The dynamic representative bid curves

are created by first factoring out the role of natural gas price on each unit’s bid curve as follows.

ybaset = yt −
Nt

ν
, (20)

where yt is the $/MW bid price and ν is the average efficiency of a CC unit, taken as 60%. After

the natural gas factor is filtered, the bid curves for the selected CC units are grouped by seasons.

For each season, a representative bid curve is fitted to the reduced bid curves data for the six CC

15



units. The fitted bid curves are constrained to be continuous and non-decreasing. The seasonal

representative bid curves are re-adjusted to account for the daily variation in natural gas spot price.

These bid curves are used in Equation 18 for computing the daily revenue and return of the risk-free

benchmark.

4 Risk-free Tranche Design and Performance Results

We implement the risk-free tranche design and evaluation presented in Section 2 based on some of

the assets included in this study. As stated earlier, we have conducted this study based on renewable

assets, constituting of wind and solar resources, in New York and Texas geographies. For the sake

of focus and brevity, results are presented here based on specific wind and solar resources located in

New York state. We will begin by presenting results of characteristic days analysis for these assets,

followed by results of risk-free tranche definition, pricing and evaluation for some characteristic

days of these assets.

4.1 Characteristic Day Identification

Days of similar generation and forecast risk profile are identified for each renewable asset using

clustering analysis conducted on 11 relevant key daily statistics. The top two rows of Tables 3 and 4

show the 11 summary statistics features used for clustering defined in terms of hourly generation

and forecast time series for the day. The centroid coordinates summarized in the two tables describe

the nature of each characteristic day, where 6 is the optimal number of clusters chosen based on

k-means elbow curves.

Table 3 shows that the solar asset’s L0 cluster (labeled in red) has lowest mean generation and

L4 cluster (labeled in green) has the second highest mean generation level, each containing 217

days and 146 days, respectively, from among the total number of days in our data. The highest

mean generation cluster, L5, also displays higher maximum and minimum forecast error than the

L4 cluster, while containing fewer days in the cluster. L4 days have higher forecast error compared

to L0 days, implying that when amount of generation is high the accuracy of forecasting shows

greater variability, which is seen for other high mean generation clusters, L3 and L5. Among the

remaining low generation clusters, namely L1 and L2, coefficient of variation of generation of L2

cluster is significantly lower than that of L0 and L1 clusters, while maximum forecast error in L2

is significantly lower than that in L1 cluster. Therefore, L2 cluster is a more cohesive cluster, even
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Chr Mean Std Hour Hour Hour Max Max Min Post-noon 2pm- # of

Day Gen of of of of gen forecast forecast /Pre-noon -10pm days

Gen max max min error error mean Gen

gen error error Gen

L0 1.52 2.4 11.9 7.49 11.67 7.23 1.65 -5.58 1.77 5.00 217

L1 5.96 8.45 12.37 12.05 11.62 24.39 8.99 -4.61 2.08 17.08 165

L2 6.05 7.99 12.9 9.88 13.86 23.42 5.72 -11.6 2.05 47.47 42

L3 12.4 16.86 12.44 11.34 13.23 46.63 17.32 -9.63 2.06 15.66 61

L4 12.73 15.68 12.62 11.77 12.69 40.85 9.47 -4.21 1.84 36.87 146

L5 15.59 19.41 12.68 10.63 14.86 51.07 13.34 -13.65 2.14 46.25 98

Table 3: Centroid coordinates of 6 characteristic days for New York solar resource

if it only has 42 days in it. To demonstrate properties of the risk-free tranche in more productive

and less productive type of days, we conduct rest of the analysis for L0 and L4 clusters for this

solar asset.

Chr Mean Std Hour Hour Hour Hour Max Min 12am Min Max # of

Day Gen of of of of of Err Err -Noon Gen Gen Days

Gen Min Max Min Max Gen

Gen Gen Err Err

L0 7.87 6.39 9.65 11.02 11.60 10.73 13.21 -9.79 4.53 0.81 21.76 419

L1 19.34 12.82 10.31 10.83 10.82 12.11 20.09 -15.97 -41.60 3.78 45.46 150

L2 25.09 16.83 11.51 12.14 11.68 12.18 24.24 -19.50 6.50 4.53 58.09 293

L3 46.75 21.47 12.59 11.16 11.32 12.67 -5.38 -78.17 3.92 15.22 81.22 63

L4 46.88 25.01 10.34 11.75 12.07 11.03 35.24 -19.70 39.82 11.55 89.80 169

L5 57.29 24.42 11.50 11.88 12.96 12.56 32.37 -17.98 -19.79 0.59 95.33 245

Table 4: Centroid coordinates of 6 characteristic days for New York wind resource

Table 4, showing the characteristic days for the New York wind asset, indicates that wind gener-

ation has overall high mean generation as well as higher standard deviation of generation, although

coefficient of variation in all characteristic days is below 1. Among specific clusters, L0 has the

lowest mean generation (labeled red) and L4 & L5 are among the highest mean generation clusters.
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L4 & L5 days have similar standard deviation of generation, even though L5 has a significantly

higher mean generation level, suggesting L5 cluster with 245 days is a fairly productive cluster of

days. As before, increasing mean generation among these clusters corresponds to higher maximum

and minimum forecast error, with cluster L3 showing the peculiar property of the maximum fore-

cast error also being negative. This feature and the midnight-noon generation feature offer the

two primary distinctions between L3 and L4 days, with all other cluster characteristics being quite

comparable. Once again, to focus on comparison of the risk-free tranche among different kind of

days, we will present rest of the analysis for L4 and L5 wind resource days.

Figure 2: Hourly generation profile of wind and solar units for the high generation and low gener-
ation cluster days

Since the risk-free tranche is implemented for each hour of each day, just evaluating the daily

characteristics of each characteristic day cluster doesn’t suffice. Figure 2 shows the 24-hour gen-

eration profile of specific characteristic days, high and low, to highlight how the generation level

changes by the hour of the day for the wind (top panel) and solar (bottom panel) asset. These
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plots show the raw generation levels for each hour for days in that cluster, the hourly mean gen-

eration, 95% confidence interval for the mean, and hourly 25th & 75th percentiles of generation.

The plots show that each characteristic day exhibits a unique risk profile, with striking differences

between high and low generation characteristic days. Besides the stark difference in the generation

level, the generation profile of high wind days shows a decreasing trend in the 24-hour period,

whereas low wind days exhibit a steady low level of generation with ever so slight upward trend.

The high solar generation cluster shows sharp rise as the sun rises in the morning with a much

smaller inter-quartile range through out the day, while the low solar generation cluster rises very

gradually, settles at a much lower peak with a relative large inter-quartile range. These properties

of the different characteristic days of different renewable generation resources will have a bearing

on the definition of hourly risk-free tranche and the corresponding bidding strategy, which will be

demonstrated in the next section.

4.2 Risk-free Tranche Results

The characteristic days are days of similar statistical characteristics as identified by clustering based

on 11 key daily summary statistics for generation and forecast time series. Treating the data points

in a characteristic day as independent and identically distributed, we can estimate the percentiles by

which risk-free tranche’s hourly attachment and detachment points can be estimated. Section 2.1

discussed the selection of percentiles of generation distribution as attachment and detachment to

match the reliability of the risk-free benchmark. Table 3 lists the hourly attachment point of the

risk-free tranche for 2 characteristic days each for the wind and solar asset at 4th percentile of

their respective generation distribution. The detachment point is set at 7th and 9th percentiles,

respectively, for the solar and the wind asset. We see that there are many hours of the day for the

wind and solar assets when the risk-free tranche cannot be extracted due to low levels of generation.

For these definitions of the risk-free tranche, we next compute the bid price point for each percentile

from the attachment to the detachment point of the tranche.

4.2.1 Computing Risk-free Tranche Bid Curves

For constructing the risk-free tranche bid curves based on their definitions from earlier in this

section, we need to have models to estimate the day-ahead and real-time power market prices, as

well as identify the minimum entropy risk neutral measure to implement the pricing in Equation 3.

We describe these two components of tranche valuation next.
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Figure 3: Attachment and detachment points for the risk-free tranche for the wind and solar units
corresponding to two different characteristic days each.

Using the load, natural gas price, day-ahead market price and real-time market price data for

New York–Zone A from 2013 to 2020, we implement the regression models from Section 2.2.1 after

removing extreme outliers. The results of the regression analysis in Table 5 show that 85% to 90%

variation in the dependent variables is explained by the independent variables. These results are

consistent across different zones of New York and Texas. Using the real-time market price model,

we generate multiple stochastic realizations of the real-time market price by sampling from the

fitted distribution to the residual errors and adding them to R̂t+1.

The optimization formulation in Equation 10 is implemented to compute a minimum entropy

risk neutral probability (Q) for the risk-free tranche valuation. Figure 4 shows the physical probabil-

ities, pi, and the risk neutral probabilities, qi, for the Vt =
Rt+1

Dt
ratio computed for New York-Zone

A. Under the assumption of stationary distribution of Vt, values of ‘V’ being higher than 1 cor-

respond to higher real-time price (spot price) relative to day-ahead market price (forward price),

while ‘V’ values lower than 1 indicate the reverse. The physical probability puts higher weights

at the two tail values of ‘V,’ while the risk-neutral probability obtained from the solution of the
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New York-Zone A Dt Rt+1

D̂t 1.13***

(0.01)

Lt−1 0.01*** -0.00***

(0.00) (0.00)

Nt−1 3.42*** 0.33***

(0.04) (0.00)

R-squared 0.89 0.84

R-squared Adj. 0.89 0.84

Observations 66552 62556

*** p < 0.01, **p < 0.05, *p < 0.1

Table 5: Electricity price regression model results for DAM & RTM

optimization problem shifts the probability weights to higher values of ‘V.’ This shift of proba-

bility assigns higher weight on higher spot price outcomes relative to day-ahead or forward price

outcomes. Therefore, state prices for these more unfavorable states are higher.

Figure 4: Physical and risk neutral probabilities for power market prices.

Based on the day-ahead and real-time market prices and the estimated risk-neutral probabilities,

we implement the pricing framework of Equation 3 for the range of percentile points between the

risk-free tranche’s attachment and detachment points. We show the bid curves for two time points

shown in Table 6, which are peak load and off-peak load hours, for the wind and solar assets for

their respective high generation characteristic days. These two specific off-peak and peak load times
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are chosen to differentiate and compare bid curves by time of day.

Geography Resource Peak Time Off-Peak Time

NY (Zone A)
Solar 2PM 7AM

Wind 2PM 12AM

Table 6: Sample peak and off peak load hours on a high generation characteristic day for which
the bid curves are generated.

A renewable asset must bid competitively in the day-ahead market to become a qualified gen-

erating resource. The renewable bids, if uniformly set higher than the bids made by the traditional

generators, will result in the renewable generator not being able to procure day-ahead power con-

tracts. Competitive bids by the renewable asset are achieved by choosing the parameter, ηrf , which

is the discount loading applied to the baseline deterministic pricing kernel. However, increasing

risk borne by the renewable generator at higher percentiles in the attachment-detachment points

range must be compensated, and λrf parameter serves this cause as the risk aversion parameter

measuring the expected rate of reward per unit risk sought for the real-time market price risk.

Each renewable asset must strategically choose these two parameters for the desired risk-return

tradeoff, guided by the asset’s technical characteristics, such as the characteristic day type, seasonal

variation, storage capabilities and anticipated bids from other generators, etc. The parametric

choice of ηrf and λrf for the specific assets being studied are evaluated and set at 0.4 and 1.0,

respectively. This parametric choice puts the entire risk-free tranche bid curve at an attractive

range in the day-ahead market for all hours of the day. Same parameter levels are used for both

the renewable assets for all their characteristic days. Figure 5 shows the bid curves for the wind

and solar assets in New York-Zone A for the high generation characteristic days, with bid prices

in $/MW aligning for each bid-point of power level (MW) offered. The bid curve starts from the

attachment point of the risk-free tranche and ends at the detachment point, linearly interpolated

for all points in the middle and reflective of the incremental risk with increasing bid point.

We observe that the risk-free tranche bid curves are responsive to the risk-profile of different

characteristic days and the hour of the day. They have different bid-point (MW) levels for different

hours of the day, based on the hourly generation risk. The day-ahead market prices are typically

higher for peak load times than the off peak load times. This is reflected in the bid price points of

$/MW level of the renewable asset’s risk-free tranche bid curve. These hourly bid curves determine
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Figure 5: Risk-free bid curves for solar and wind asset in New York-Zone A at peak and off peak
load times for high generation days

when a renewable asset’s risk-free offer is accepted by the day-ahead market and in doing so,

determines the revenue and the return time-series of the renewable asset’s risk-free tranche. We

conduct the financial performance analysis for the risk-free tranche next.

4.3 Risk-free Tranche Performance

To facilitate the financial performance evaluation of the risk-free tranche, we need to implement the

risk-free benchmark developed in Section 2.3.1 for New York state. Figure 6 shows the historical

reduced bid curves of the six sample CC units selected from different locations in New York state,

and the piece-wise linear fitted bid curve for a representative combined cycle natural gas generator

in NY. As described in Section 2.3.1, the reduction of the historical bid curves was done to eliminate

the role of natural gas prices on the bid curves.

The power sold by the representative CC generator in the day-ahead market is determined

by its bid curve posts and the day-ahead market clearing price for the particular hour, as per

Equation 18. Using a historic simulation of day-ahead market prices for the time period Jan 2017

to Dec 2020, we generate the representative CC generator’s return time series. The fitted bid curve

of the representative CC unit from Figure 6 are adjusted daily by the natural gas price, before being
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Figure 6: Winter, Summer and Transition months bid curves posted by 6 combined cycle generators
in NY and the fitted representative bid curve.

used in Equation 17 to compute the CC unit’s daily return. Since four of the six CC units are in

Zone J and two are in Zone G, we take a weighted average of the day-ahead and real-time market

prices for these two zones for the purpose of this computation. The Sharpe ratio performance metric

for the risk-free benchmark is computed based on this return time series. Table 7 summarizes the

statistics for the risk-free benchmark daily return time-series and the Sharpe ratio for the risk-free

benchmark for the New York power market stands at 0.43.

Daily Returns

count 1328.00

mean 0.17

std 0.40

min -0.37

25% -0.02

50% 0.10

75% 0.24

max 4.93

Table 7: Summary statistics for the daily return time series of combined cycle natural gas generator
risk-free benchmark.

A similar Sharpe ratio metric is computed for the renewable assets for different characteristic

days of the risk-free tranche, and compared against the Sharpe ratio of the risk-free benchmark.

We present the performance of the risk-free tranche of solar and wind assets, in terms of both

Sharpe ratio as well as analyzing the tail risk of daily returns. For each characteristic day type,

Equations 14 and 16 described in Section 2.3 are populated using the quantities computed in this
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section for the chosen renewable assets. Return time series for different characteristic day types are

concatenated to build a more complete return time series to compute the Sharpe ratio of returns.

The return distribution is heavily right skewed, hence the Sharpe ratio is estimated under normality

assumption to avoid very high positive daily returns biasing the estimates.

Performance of Solar Asset: We compute the returns for the two characteristic day types,

high generation (L4) and low generation (L0) days, the properties of which were summarized in

Table 3. After concatenation there are 363 days, with 146 high solar days and 217 low solar days.

Table 8 summarizes the statistics for daily return for the solar asset’s risk-free tranche, with the

Sharpe ratio of 0.40. The Sharpe ratio of this risk-free tranche is within 5% of the Sharpe ratio of

the risk-free benchmark. Since we concatenated the return time series of high and low generation

days of the solar asset, inclusion of other medium generation days will produce comparable results.

The tail properties of the tranche returns are shown in Table 9 (left tail below 1st percentile),

Table 10 (specific hours of tail outcomes), and Table 11 (right tail above 99th percentile).

The left tail risk in Table 9 arises primarily due to unfavorable spot price outcomes at the times

of generation shortfall in the risk-free tranche. For instance, on January 24, 2019 the risk-free

tranche contracted 4.48MW, but the actual generation was only 1.46MW, resulting in a shortfall of

3.02MW with the high real-time price risk exposure. To further investigate the left tail risk, some

sample hours from January 24, 2019 are shown in Table 10, where for multiple hours the generation

shortfall of the risk-free tranche is exposed to high real-time prices resulting in negative cash flows.

Additionally, there is only one day when contracting using a risk-free tranche is worse than not

contracting, which corresponds to a return less than −100%. On the other hand, high day-ahead

prices lead to high returns and the right tail realizations seen in Table 11.

Performance of Wind Asset: We compute the returns for highest generation (L5) and

medium generation (L4) characteristic days for the wind asset as described in Table 4. The daily

returns of the 245 highest wind days are concatenated with the 169 medium wind day returns. We

focus on these two characteristic days since the other characteristic day types are not amenable to

extracting a risk-free tranche due to low wind productivity. Table 12 summarizes statistics for the

wind asset risk-free tranche daily return time series, with a Sharpe ratio of 0.28. While the Sharpe

ratio of the wind risk-free tranche is lower than that of the risk-free benchmark, studying the tail

characteristics of returns is instructive. Tables 13 and 14 highlight the left tail risk, where former

shows return outcomes at below 1st percentile and latter shows sample of hours from November

29, 2019 when the worst return is realized. Table 15 shows return outcomes on the right tail above
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Daily Returns

count 363.00

mean 0.78

std 2.07

min -1.06

25% -0.53

50% -0.25

75% 1.63

max 13.23

Table 8: Summary statistics of daily return for the solar asset risk-free tranche.

Date DAM RTM Contracted(MW) Gen(MW) Shortfall(MW) Cashflow($) Returns

2019-01-24 91.15 1057.73 4.48 1.46 3.02 -15.58 -1.06

2018-02-09 769.05 747.39 4.48 1.03 3.46 9.03 -0.96

2019-11-11 287.27 624.38 1.77 4.60 0.10 20.19 -0.92

2019-11-07 318.92 986.28 2.00 26.16 0.00 26.36 -0.89

Table 9: Left tail of the return distribution for the solar risk-free tranche in NY-Zone A

99th percentile.

Left tail risk for the wind asset also arises due to spot price exposure at times of generation

shortfall. As seen in Table 13, the total power contracted on November 29, 2019 was 57.5MW,

however the actual generation was only 0.4MW. A shortfall of 57.1MW was exposed to real-time

market price risk. Table 14 shows several hours on November 29, 2019 when high real-time market

prices cause generation shortfall to result in negative cash flows. In the case of a wind asset, there

are five days when contracting a risk-free tranche is worse off than not contracting. High day-ahead

prices lead to high returns and right tail realizations shown in Table 15. Therefore, the tail risk

analysis shows that even though the Sharpe ratio of wind risk-free tranche is lower than that of

the risk-free benchmark, there is only minimal tail risk and risk-free contracting is better than not

contracting on 98.8% of the days.
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Timestamp DAM RTM Contracted(MW) Gen(MW) Shortfall(MW) Cashflow($)

2019-01-24 08:00:00 48.22 60.78 0.04 0.00 0.04 -0.30

2019-01-24 09:00:00 37.30 69.66 0.43 0.05 0.38 -10.65

2019-01-24 10:00:00 37.11 94.88 0.67 0.21 0.45 -18.31

2019-01-24 11:00:00 36.98 45.53 0.74 0.23 0.51 4.23

2019-01-24 12:00:00 32.16 41.82 0.91 0.32 0.59 4.52

Table 10: Sample hours of the day with highest negative return for the Solar asset in NY-Zone A

Date DAM RTM Contracted(MW) Gen(MW) Shortfall(MW) Cashflow($) Returns

2018-06-01 2120.41 964.32 181.62 286.88 0.00 26751.69 12.21

2018-07-04 2017.59 1171.51 181.62 317.62 0.00 26798.40 12.24

2018-06-02 2105.53 1927.90 181.62 246.62 0.01 28434.80 13.04

2018-07-03 2162.59 1196.53 181.62 365.69 0.00 28801.44 13.23

Table 11: Right tail of the return distribution for the solar risk-free tranche in NY-Zone A

5 Conclusion and Future Work

Renewable energy investment is being aggressively sought globally to meet the future energy de-

mand, which presses the challenge of managing the inherent stochasticity of renewable energy

resources, such as wind and solar generation. In this paper, we applied financial engineering asset

securitization principles to carve out risk-free generation capability from wind and solar energy

resources. The risk-free tranche definition of securitization utilized the generation risk profile of

the renewable assets, which dynamically adapts the attachment and detachment points of the risk-

free tranche as per the generation risk profile. A minimum entropy risk-neutral pricing framework

was developed to determine the market-based bid curves for the risk-free tranche. And finally, we

evaluated the risk-free tranche performance against a carefully defined risk-free benchmark for the

day-ahead power markets.

Our implementation of the proposed risk-free offering framework based on wind and solar assets

showed that the risk-free tranche matches the risk-free benchmark in reliability, and is comparable

in financial performance to the risk-free benchmark. While we have implemented the framework in

all geographies of New York and Texas, the results shown in this paper focus on New York-Zone A.

The solar risk-free tranche performs better than the wind risk-free tranche in this zone in terms of
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Daily Returns

count 414.00

mean 0.30

std 1.06

min -1.17

25% -0.31

50% 0.14

75% 0.68

max 8.53

Table 12: Summary statistics of daily return for the wind asset risk-free tranche.

Date DAM RTM Contracted(MW) Gen(MW) Shortfall(MW) Cashflow($) Returns

2019-11-29 327.92 497.31 57.56 28.9 57.16 -349.19 -1.17

2019-12-16 339.68 572.61 59.53 14.5 54.76 -289.27 -1.14

2018-12-30 357.84 448.01 59.58 0.0 59.58 -115.47 -1.07

2020-08-28 488.01 753.15 111.08 184.7 37.92 -136.46 -1.07

Table 13: Left tail of the return distribution for the wind risk-free tranche in NY-Zone A

Sharpe ratio, even though in both cases of risk-free tranche there is minimal tail risk. Barring a very

limited few number of days, contracting a risk-free tranche in the day-ahead market is better than

not contracting. A comparably and reliably performing risk-free tranche developed in this study

can provide the necessary assurance to power grid system operators to incorporate the renewable

assets based risk-free tranche in the typical day-ahead unit commitment and economic dispatch

decisions.

As per U.S. Energy Information Administration (EIA), approximately 95% of the electricity

demand is settled in the day-ahead power markets. Therefore, enabling renewable resources to

competitively participate in the day-ahead market and enabled to manage the inherent generation

risk of renewable assets will help diversify the energy mix and reduce dependence on conventional

fossil fuels. Renewable generators being able to competitively participate in day-ahead market using

a market-based, risk-responsive bidding strategies will enhance their profitability and achieve a

desired risk-return tradeoff. A deteriorating climate necessitates empowering renewable generators
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Timestamp DAM RTM Contracted(MW) Gen(MW) Shortfall(MW) Cashflow($)

2019-11-29 08:00:00 15.67 24.09 3.48 0.2 3.28 -24.48

2019-11-29 09:00:00 16.66 29.53 3.49 0.0 3.49 -44.91

2019-11-29 10:00:00 16.94 27.02 2.89 0.1 2.79 -26.44

2019-11-29 11:00:00 16.98 22.51 1.70 0.1 1.60 -7.15

2019-11-29 12:00:00 17.01 20.15 5.26 0.0 5.26 -16.52

Table 14: Sample hours of the day with highest negative return for the Wind asset in NY-Zone A

Date DAM RTM Contracted(MW) Gen(MW) Shortfall(MW) Cashflow($) Returns

2018-01-08 2804.14 921.55 111.08 2068.0 0.00 13014.92 5.50

2019-01-23 1881.28 565.54 133.64 1926.5 0.00 10249.14 5.82

2018-01-06 4236.42 5388.22 111.08 1357.8 5.46 16577.41 7.29

2018-01-03 2453.46 3336.51 133.64 1244.9 0.00 14320.67 8.53

Table 15: Right tail of the return distribution for the wind risk-free tranche in NY-Zone A

with appropriate risk mitigation methodologies to tackle generation risk and become profitable.

This ability to manage risk and improve profitability will increase investment in green energy and

help reduce carbon emissions, which can yield massive benefits of alleviating climate change.

There are many ways the current study can be enhanced, such as using more data for generation

and forecast error, as well as their evolving trends for the future with changes in technology or

climate patterns, and a resulting impact on the definition and prediction of characteristic days. On

some characteristic days, we saw no prospect of extracting a reliable risk-free tranche. On such

days, alternate risk management strategies must be developed, such as those motivated by defining

riskier than risk-free tranches, which must also be appropriately priced and bid in the day-ahead

market. When a risk-free tranche is unable to meet the obligation due to less than expected actual

generation, we assumed that the renewable generator will acquire the shortfall from the real-time

market to make up for the shortfall. While this is reasonable for the risk-free tranche, where only

a small fraction of the renewable generator’s generation capacity is bid, for higher and riskier bids,

this assumption may have to be revisited.

There is a very high level of interest and investment in improving energy storage technologies,

which can be used to enhance the risk-responsive bidding strategies for renewable generators devel-

oped in this paper. Storage capability can help smooth the generation risk and make higher cut-offs
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for the tranches’ attachment and detachment point possible, thus further improving competitive-

ness and profitability of renewable generators. A key advancement needed in tandem with the risk

management innovation developed in this paper is the capability of power markets to seamlessly

incorporate the bids from renewable assets with appropriate upgrades in their unit commitment

and economic dispatch formulations.
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